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INTRODUCTION

This report describes our technical accomplishments during the
first six months of the present contract. The report is in two parts.
In Part A the results of a one-dimensional progression failure
modeling of rock static behavior are described. In Part B our
experimental findings in the mechanical behavior of rock under compressive
cyclic fatigue are detailed. Part B is to be presented at the 13th
Symposium on Rock Mechanics, Urbana, Illinois, September 1, 1971,

Work is now underway in rock tensile cyclic fatigue. A method
has been found to test this fatigue behavior and preliminary results
suggest that the concept of a fatigue limit for rock in tension is viable.
A full account of our progress in this aspect of the program will be

part of our next technical report.
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A ONE-DIMENSIONAL PROGRESSIVE FAILURE MODEL OF ROCK

Robert G. Lundquist

Robert W. Heins

ABSTRACT

It is well known that the strength and deformation

properties of rock are highly variable. It has also been

observed that rock does not fail in a weakest link manner but

progressively, maintaining considerable load-bearing capac-
ity beyond its peak load. It is hypothesized that the vari-
ability of properties and progressive failure behavior are
direct consequences of the statistical inhomogeneity of the
material. A one-dimensional model is used to demonstrate
that progressive failure can indeed resu'*t from {nhomogeneity
of the material and to show what the effects of varying
statistical distributions of properties might be on the gross

deformation and failure of rock.



"You see, of course, if you're not a dunce,
How it went to pieces all at once, --

All at once, and nothing first, --

Just as bubbles do when they burst. *

The Deacon's Masterpiece
Oliver Wendell Holmes

CHAPTER |
INTRODUCTION

Problem Statement

In the interpretation of laboratory tests and in the design of
structures in rock, we often assume that, like the Deacon's "wonderful
one-hoss shay, " rock fails "all at once, and nothing first. " It is easily
demonstrated that rock does not fail in this way under most practical
loading conditions, and it is the purpose of this study to show the con-
sequences of this misleading assumption and to present a simple model
for rock failure which allows the interpretation of rock strength tests and
the design of rock structures to be put on a more rational basis.

There are several implications in the idea of failing "all at once
and nothing first" which we must examine. The first and most obvious
is that once the strength of the material is exceeded by the stress, it is
no longer capable of sustaining load. An abundance of recent evidence
has shown, however, tnat in compressive and mixed stress fields, and
in perhaps every loading except uniaxial tension, most rock can sustain
considerable fractions of its peak load after this load has been exceeded.
This is the concept of the "complete stress-strain curve, " perhaps more
precisely called the "complete load-displacement curve" since only mean
stress and strain can be determined after failure. It is this behavior
which led Jaeger and Cook (1) to define the brittle state of a material as
that condition in which "i:  ability to resist load decreases with increas-
ing deformation.



A second implication, which will be seen to be intimately con-
nected with the first, is the idea of the "weakest link. * By analogy to
the ancient adage that a chain is no stronger than its weakest iink, it is
assumed that if failure ensues from exceeding the strength of any part of
a rock structure, the entire structure will fail. Failure must here be
defined as the loss of the entire load resisting ability of the structure.

To see that this is untrue, we can examine some physical observations
which have accompanied the production of complete stress-strain curves
for rock in compression. Wawersik (2) found that visible cracks developed
in a marble in uniaxial compression at about 90% of the ultimate load.

At a displacement about 20% greater than the peak of the curve, the
marble was capable of resisting about half of its peak load. Although
many large cracks appeared, a major portion of the specimen was intact
when it was unloaded from this point and removed from the machine.

Some rocks, Wawersik's type Il rocks, e.g., are indeed incapable of
sustaining load beyond their peak. These rocks have a numerically posi-
tive "post-failure" slope so that self-sustaining failure can develop from
only the elastic energy stored in the specimen and without additional
energy from the machine. To test such rocks, it is necessary to remove
energy from the rock in a controlled way after the peak is passed. In
this limited case, rock fails in a weakest link way; however, it appears
that the behavior is very dependent on loading conditions (3), and except
as a nice explanation for rock bursts, it may not be applicable to rock
structures at all. It cannot be generalized, then, that rock is a weakest
link material in uniaxial compression. It should be obvious that in con-
fined compression, rock sustains more load at greater displace..ent after
the peak and is even less a weakest link material.

What about tension? Hudson, Brown and Rummel (4) have shown
that discs and rings loaded in diametral compression (Loth considered to
be indirect tensile tests) also produce a load-displacement curve in which



load is sustained at displacements beyond the peak. Again, visible cracks
appeared while the specimen remained essentially intact. Again, one

rock was found (Solenhofen Limestone) for ~vhich a complete curve could
not be produced, but a weakest link model was not generally applicable.

Direct tension remains something of a mystery. Hughes and
Chapman (5) showed a stable, bell-shaped curve for concrete, but to
date, although there has been at least one serious attempt (6), no one
has succeeded in publishing a similar result for rock. On the other hand,
Brown and Singh (7) have shown that considerable acoustic energy is re-
leased at loads considerably below ultimate. Wawersik (2) found loosen-
ing of and fracture along grain boundaries well below the ultimate Joad
and concluded that "Rock failure in tension can be a progressive process
and does not necessarily occur suddenly. *

Even if we were to concede that indirect tension of a weakest link
model is applicable, Hudson (8) has pointed out that direct tensile testing
may not be applicable to the design of structures since in practice grad-
ients will always be present.

The problem then, simply stated, is to make a quantitative model
for rock which will allow progressive failure and residual strength to be
interpreted in laboratory tests and then utilized in structural design.

-="Fur, " said the Deacon, "t's might plain
Thut the weakes' places mus' stan' the strain;
'N' the way t' fix it, uz [ maintain, Is only jest
T' make that place uz strong uz the rest. "

The Deacon's Masterpiece
Oliver Wendell Holmes

Inhomogeneity of Rock

The reason that the wonderful one-hoss shay went to pieces "all at
once and nothing first, * Holmes tells us, was because of the deacon's

rather exacting construction standards. He recognized the weakest link



concept and eliminated the problem by making each piece "uz strong uz
the rest. " One of the most obvious things about rock is that each piece
is not "uz strong uz the rest. * This is inhomogeneity.

The solution of most rock mechanics problems begins with a set of
simplifying assumptions which are nearly universally acknowledged to be
invalid. These assumptions usually include, but are not necessarily
limited to elasticity (linear, small displacement elasticity up to failure),
isotropy (two constant elasticity), time independence, and homogeneity.

As mathematical tools have become more generally available, these
restrfctive assumptions have been relaxed and we see today a hugh volume
of literature treating rock as viscoelastic (especially valid for salt and
potash), perfectly plastic or work hardening plastic (a good model for
high confining pressure conditions as in deep sediments), transversely
isotropic (useful for layered rocks), etc., etc. Inhomogeneity, however,
has been largely ignored due to .:s severe insusceptibilicy to rigorous
mathematical attack.

Since the term inhomogeneity seems to mean different things to
different people, let us clarify what will be meant within the context of
this study. By homogeneous, we mean that every point in a material, or
at least in a particular specimen of that material, has the same properties
as every other point. We must restrict the term "point" to the continuum
mechanics sense and ignore the atomistic structure of the material. This
condition of sameness of properties can be violatea in several ways.

The most obvious kind of int.omogeneity is found when the speci-
men or region of consideration consists of two or more subregions with
distinct properties. The example that comes most quickly to mind is a
sandstone layer overlying a coal seam. A problem in this situation is
deterministic in the same sense that any homogeneous rock mechanics
problem is deterministic; the boundary conditions and material properties

are or can be as well defined as in the homogencous case. We will call
this multiproperty, multiregion inhomogeneity deterministic inhomogeneity.



The second way in which the homcgeneous sameness of properties
condition can be violated occurs in a rock type (often thought of as a
partic-:lar material) such as a conglomerate or large-grained granite, which
is made up of two or more mineral constituents. The most obvious feature
of such a rock, even to a layman, is its inhomogeneity. Unless we are
forced by a particular test, such as an indentation test, to sample a
very small volume of the rock, its inhomogeneity is usually shrugged off
by calling it macroscopically homogeneous and assigning single values
to its elastic and strength properties. For many purposes this is adequate;
we will examine some of the consequences later. We will call this kind
of inhomngeneity compositional inhcmogeneity.

A more subtle violation of the sameness condition takes place in
rocks composed of a single mineral, such as sandstone or rock salt.

Here, prorerties vary from point to point, in spite of mineralogical same-
ness, because of the granular nature of the vock. Each grain is different.
Each has its own unique orientation, which may or may not have a pre-
ferred direction. Each may contain flaws, such as cleavage or fracture,
or impurities in varying amounts. Of equal importance is the difference
in properties between the mineral grains and their boundaries. In our
first course in geology, we are taught to differentiate between quartzite
e&nd sandsto:nc on the basis of differing relative strengths of grain and
grain bpoundary. How then can we consider these rocks homogeneous ?
Good enginecring results to many problems can be had, however, by tak-
ing average or gross properties as before. This kind of inhomogeneity
we label granular inhomogeneity.

There is, - of course, no real separation between compositional
and granular inhomogeneity, with most rocks possessing some degree of
both. The important point is that this inhomogeneity is not deterministic.
In a given problem, the boundary conditions and material properties are
not well defined. There exists in such problems a degree of randomness.

We will call this kind of randomness statistical inhomogeneity. I. is



with the consequences and modelling of statistical inhomogeneity that
we will be concerned.

The discussion of compositional and granular inhomogeneity might
seem to imply that statistical inhomogeneity exists only on the scale of
the grain size. This is useful in studying laboratory tests but becomes
incomprchensible at the field scalc. At this scale, deterministic inhomo-
geneity might include well defined stratigrapny and such structural {eatures
as faults, dikes, etc., or a particularly well mapped joint set. On the
other hand, a joint set in which direction, spacing, and extent are xnown
only approximately, as is the usual case, is an example of statistical
inhomogeneity. Even within a single bed or mass of rock, a region may
contain more or fewer flaws, more or fewer inclusions, or have a different
mineralogical makeup from another region of the same bed or mass. Such
variations may have trends which can possibly be accounted for in the
model, but this variation can, in general, be said to make rock statistically

inhomogcneous at the field scale.

Variability of Rock Propcrties

Virtually all researchers in rock mechanics are sufficiently aware
of the statistical naturc of rock to avoid drawing conclusions from the
results of a single test. It can be argued, hovsever, that the mean of &
"sufficient" number of tests can be assigned as a "physical property" of
rock. Since a mass of rock can be thought of as made up of an infinite
number of such samples, its mean properties should be reasonably close
to the mean of the sample propertics and thus such properties we used in
the design of structures in the rock mass. Such a practicce obviously re-
quires the use of a sizcable "safety factor. " The difficulties involved in
the use of safety factors will receive extended consideration in the
section on reliability.

Many physical properties, including elastic constants, unit weight,
porosity, permeability, thermal properties, etz., etc., i se importance



in rock mechanics problems; all can be said to vary to greater or lesser
extent from point to point within a rock mass.

Hudson (8) spcaks of tensile suengt.. variation being of three types:

(a) Variation with different specimens. If the same test is performed
on the same rock under the same conditions, different values of
tensile strength result.

(b) Variation wit different specimen volumes. If the same test is
performed on the same rock with specimens of different vol.mes,
the average value of the tensile strength changes with volume.

(c) Variation with different tests. The average tensile strength varies
with the type of test used. For example, the modulus of rupture
can be twice the straight pull tensile strength.

While Hudson is referring only to tensile strength tests, his
categories of variation are equally applicable to otaer strength measures.
Within-test voriation is a fact of all strength testing. We can expect
considecrably different average values for shear strengths determined by
singlc shear, doublc shear and torsion tests. Brown, Hudson, Hardy,
and Fajrhurst (3) have recently shown that between-test variations can
be expected with differing compressive strength tests as well.

Let us return now to the problem of using mean values from pro-
perty tests as design values for strength. Within-test variations create
a poorly recognized, but very serious problem in using test valies for
design. Given a weakest link model for rock failure, one should clearly
take the minimur of a series of test results rather than the mean as a
design value. Fven without accepting weakest link failure, it would scem
prudent to design. for the worst condition likely to occur. This raises the
question of whether or not rock has a minimum strength (other than zero).
Particularly in tension it would seem likely that if sufficient speciinens
were tested, one would fail without application of any load at all. This,
in turn, opens the much larger question of the sampling process itself.

In selecting blocks of rock from the mass, coring specimens, sawing and



grinding them, we reject at cach stage those samples which contain flaws.
The resulting specimens can hardly be considered representative of the
rock mass. It is for the forcgoing rcasons that rock is often considercd
to have no tensile strength at all in design problems.

Tho problem of a large number of speciimens giving a zero minyinum
tensilo strength is, of course, directly rclated to the size eflcct. The
existoncec of a strength-size effect has been widely debated, ana recent
evidence (9) scems to indicate tnat what appears to be o sice cffeet §s
attributable instend to stress gradient effects or perhaps to differing avasl-
able encrgy of the tosting machine in relation to energy required for fajlure
of a given volume. If o size effect does cxist, it probably Is o nonlincar
docrease in strength with increasing specimen volume. If the decreasc
persists to large volumes, design values of strength for rock structures
must be correspondingly reduced. To apply laboratory observed size
offects to large rock structurcs requires extrapolation over scvetral orders
ol magnitude, which is always o questionable proccedute.

One alternative appoars to be in-sftu strength testing inveiving
very large specimen volumes. Disproportionats ~xjense and the practical
difficulties of performing such tests have limiied their use.

Anothcer alternative, which the progressive faojlure model described
herein is intended to explore, §s to make structural design problers as
doterministic as possible by geologic mapping and extensive laboratory
scale testing cnd to usc the results of the laboiatory testing to cstimote
distributions for the statistical varjations in the propertics.

Retwecen-test vatjations raise the question of what test to use to
obtain physical propertics. Particularly in tensilc testing there §s o con-
tinuing proliferation of new tests and littlc agreement even on how to
perform a single kind of test. 1t would seem that less attention should
be paid to the question of which test and how to run it and rote to the

questior of why differcnt tests given different results.  As an example,



Hudson, Brown, and Rummel (7) have recently shown that the Brazil
(diametral compression) test, one of the most commonly used indirect test.s
for tensile strength, is not a tensile test at all. With the load surfaces
in direct contact with flat steel platens (as the test {s 1:3ually performed),
they found that fajlure always initiated in the compressive zone under-
ncath the loads. Even with the load surfaces protected, they could not
cause faflure to initiate at the center.

It can be readily assumed, but perhaps never proved, that the
three types of strength variation above are manifestations of strength
inhomogeneity. It is much ecasicer to demonstrate that variations in other
propertics arc directly related to statistical inhomogeneity of the material.
The specific gravity of a rock specimen, for example, is clearly cqual
to the weighted mean of the specific gravities of all of its subregions
(if proper account is taken of pore space). Similarly, the overall stiffness
(EA/L) of a uniformly stressed specimen can be found by a finite clement
representation with cach elament given an independent modulus corres-

ponding to the region it represents.

Probabilistic Failure Theory

All of the above-mentioned types of strength variation can theore-
tically be accounted for by a model which predicts not a unique failure
stress but a probability of failurc at any <trcss level. The best known of
these models is Weibull's statistical theory of material strongth (10, 11).
While Weibull's theory has been shown to be inadequate for rock, probably
because it is a weakest link theory, it will be usecful to examine it here.
The prescntation here is due to Hudson (8) but is available from mmany
other sources.

In its simplest form, Weibull's model consists of V clements, cach
having a probability of fatlure Po at a given stress ¢. The probability of
element survival is 1-Po, and the probability of system survival is (l-Po)y
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1f Pv is the probability of system tailure, then

1-Pv = (1-Po)’
or
Pv = 1 -exp[Vlog (1 - PO)).

Weibull defines the risk of failure R as - vlog (1-Po). Since loy
(1-Po) depends only on the stress o, the risk of {ailure of a differenticl

volume clement dv can be vritten as;
dR - I() dv.

If we take R - j'vf(c)dv, then the probability of the entire specimen

failing is:
Pv = 1-cxpl- [ f(c)avl. (1-1)

The problem hcere is clearly that of defining f( ) so that the correct
cumulative distribution of strenaths (Pv vs. faflure load curves) will re-
sult for cach test and specimen volume.  The function (), if properly
choscn, would then be a "true" material property.

While the thcory itself is independaent of the mechanism of failure,
it might be thought of in terms of a volume clement containing a tlaw
which is "critical" (in the Griffith sense) at the particular level of normal
stress to which the volume clement is exposed. There is no reason to
supposc that the distribution of flaws (or clemental strengths) is veell
described by any commonly used probability distribution. Weibull assun.ed
that F(.) was given by: -6 m

f(c) =[——=) (1-2)

L

o
where cu rcpresents a stress below which no clenient fajlure can occur
and s and m arc material constants, lHe later described it as "A statis-
tical distribution function of widce applicability, " and indced it is.  This
function has been used in such diverse fields as cconometiic modeling,

and the reliability of clectron tubes.
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Substituting (2) into (1), we obtain

0-0 m
Pv = 1 -exp[-[I -—z——'] dv). (1-3)
o

This is the basic cquation of Weibull’s theory. If the three con-
stants arc truly material constants, and can he found for a given material,
Eq.1-3 can be integrated to provide a distribution of failure strengths (in
terms of failure probability at a given stress) for any test or any specimen
volurie. The process can be quite involved since it requires knowing and
ifntegrating the stress distribution over the entire specimoen volume.
Nonctheless, it has been integrated for a number of tests. In his first
paper, for example, Weibull presents the result that the modulus of rup-

ture (3-point bending strength) is (2m + Z)l/m

times the direct pull tensile
strength. For m = 3, this factor is 2.0, and for m - oo, the factor is 1.0
(the strengths are the saine).

Sincc its publication in 1239, Weibull's theory has been widely
discussed and the probability distribution widely employed. It has,
howcever, been subjected to remmarkably foew experimental analyses. In
many cases, experinental "verification” has consisted simply of finding
a sct of parameters, Co' C and m, to fit a given set of data. The
existence of cach parameter, of course, can neijther prove nor disprove
the theory.

It would be surprising, in fact, if a set of data derived from any
statistical process could not be fit by a 3-parameter model. The uscful-
ness of the distribution to describe Lhe fiber strength of Indian cotton,
statures for adult males born in the British Isles, and the breadth of beans
of Phaseolus Vulguris, lics in its ability to "simulate” a wide range of
more conventional distributions such as exponential, normal, and log-
normal, as well as less comnion shapes.

Where the theory has been tested, particularly in rock, the results
were poor. Hudson (8) found that the theory would not predict cither the
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effcect of changing dimensions or the between test variations in 3 and <
point bending sufficiently well.

There arc two entirely independent recasons why Weibull's theory
might not work. The first lics in the theory used 1n deriving cquation - 1.
Only if fatlure §nitiation in any volume elencent tends to catuclysmic
structural failure with no increase in stresc can cquatron |-1 be considerced
valid. Ve have previously scen thot 10Ca 1S nOt o weanent L matenal
under common loading sjtuations.  Equation =1 connct, then, oo properly
applied to rocks.

The sccond reason for the farlure of the thceory 15 in the chofce of
F(x). The function is a matcrial property for any weakest lini. material.
There is no justification at all for sclecting the VWaeibull function, and
thus no reason to expect that the constants are ruaterial properties. The
application of cquation 1-3 to any 1material 15 sinply a curve-fitting
process, in the same sense as polynniial curve fittina to physical or

other data. It may be convenient computationally Lut putting phyaical

‘dnterja ctation ¢a the thice Welbull®'s naterial constints s os risty @8

interpreting the cocfficicnts of a curve fit polynonaal,

Lven if we reject Weibull's theory as inadequate, 1t points up ot
least one indispensable fact: ininterpreting laboratery strength test and
designing rock structures, we canno’ use slrength deterministically. We

must instead look for and design to a probability of falure.

Reltability

——— e —

Quite naturally, the vocabulary ant nuch of the notiicratics deal-
ing with the probability of failure are found in the hitcrature of rotil b gl
Unfortunately, workers in reljability are usually concerned with the
probability of clement or systen: faslure as a function of urie, without
tcgard to whether 1t s load or strengtin or both which change with time or
arc probabilistic functions of time. Two concepts from basic reliabthity

theory are important here: chatn retiability and rcdundancy.
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Chain rcliability is represerted by a series circuit (Fig. 1-1) in

which each elenent must remain uifailed for the system to be unfailed.

— [ —{c——{

FiG. 1-1  Chain Reliability

If Px is the probability that clement ¢ is unfailed, thengx - 1 - Px
is the probability that element x is failed. The reliability R of the system
is

R o= P PePCPLYE

The probability of system fajlure Q - 1 - R is then:

Q- 1-PPP CPDPE

We previously encountered the same notion in the derivation of
Weibull's theory vhere by taking the probability of failure (Po =1-P-q)
as the same for all clements, we found the probability of system failure
Q=1-(- Po)v for V series elements,

Redundancy is represcnted hy a parallel circuit (Fig. 1-2) giving
the opposite formulation. llere it 1s assumed that if any clement is

unfailcd, the system is unfailed.
| S =
5}

FIG. 1-2 Recdundancy

Taking qx os the probability of clement fajlure as before, we have

Q - 4,949,



and

R=1-Q-= 1 -q,a.a-

The resulting Weibull type modcel for the redundunt material would have:

v >
Pv - (Po) - exp (v log (lo)].
Given again that l'o = q» is a function of the stress, we could write
Pv - exp [Jvi' () dv]. (1-4)

We would again be faced with the problem of finding 70 ) {or the niaterial
in question.

Notice that 2quation 1-4 describes o matenial whicei loses rno
strength with clement failure wvhile the Wegbull weakest Tink material
lost all of its strength with clement faflure.  The redundai? matetial §s
clecarly a poorer model for rock than the weakest lini matctial; the truth
is somewhere in botweca,

Ancthr approach to probobitatye of faflvre, which v ehall fin!
cxitremely uscful, s that 1akien by Rececioglu ond Conder (12). They
dcerermine the probabs ity of faflure of a structuaal coupaincil by assun ing
that it is cqual to the probability that a statistically dintnibuted stress
cxceeds a statistically distnibuted strengtli. They cnunicrate o large
number of factors which cause both stress and strength to be probebilistic
rather than fixed quantitics, They tecommend finding a faflure governfnc
stress for the component and rodifying the nes fnal stress at the probable
foilure point by varjous factors using Monte Carlo for all vanables cen-
ccrued to produce an cmpirical frogqacncy dictabotion for stresa, Siestlarly,
an empirical distribution could be constructed for cbength by starting vth
the nominal (handbook) strength of the material.  They say Iittlic about
finding the distributions of the individual variables makina up the stress
9nd strength distributions but indicate that the strength dictribution can
be found by testing a number of actual components under the actual en-

vironmental conditions of their use.  This vould lcave only the load
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distribution and certain environmental factors in the stress distribution.
kececioglu and Cormier show how to compute reliability R or the
probability of component failure Q (- 1 - R) from the distributions of
streagth (S) and stress (s).  If {(S) and g(s) are prcbability density func-
tions as shown in l'ig. 1-3, then the probability that stress is in the

interval dJds about S, is area A,.

1 1
e o948 ds | | . .
l(s-l- 5 S 8 28¢5 ) = g(bl)ds : Al
The probability that S > s is the shaded arca under the strength density
curve }\Z. ©
P(s >sl) - [ #(8) ds - AZ
s
1
The probability of no failure, i. e., the reliability, at sl is the product of
these two probabilitics.
@
dR - g(sl) ds x [ ((S) dS
)

Reliability of the componernd is the probability of the strength ex-

ceeding the stress over the entire range of applied stresses:

@ @
R = fdR = [ q(s)[[ £(S) dS]ds (1-95)
- s

An alternative formulation can be found from the probability that
stress i1s less than stiength:

@D 8
R= [ (S({f gls)ds)ds (1-6)
Q@0 -@

By using the propertics of density functions:
@
[ f(S)ds - 1
-

and
@

[ a(s)ds - 1
-®
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it can presunably be shown that 1-5 and I-€ are equal.

Equations i-5 and 1-6 can be readily solved numerically. Exact
solutiuns for comn.on probability functions are obvicusly much more diffi-
cult. B using an alternate epproach, Kececioglu and Cormier give the
exact solution tor tie case where both stress and strength are normally
distributed,

The density tunctions {or the nornial distributions are:

) 552
y(s) TN cr\-p[-’i (-':j'-') ]
s s
and | : S-_s_ 2
() - —5— expl-5 (=—) ]
bS\ 27 2 ¢

where % and s are the means and ¢ and ¢g are the standard deviations.
Reliability is the probability that strength exceeds stress or that

S- s~ 0. Taking S - s = &, reliability is the probability that © > 0. The

distribution of °, called the difference distribution, is also normal aad

is thus:

- 2
r-r
h(") ~—1,"‘ prl-l(‘”‘_“"")] (1-7)
c N2 2 [
L 4
where t - S-s
2 2
and OC B °S+°s

Reliability R is aiven by the positive density of /. Thus:
@
R: P(;>00 = [ h(7)dt (1-8)
(o)

The probability of failure Q (1 - R) is given by:
o]
Q = P( <0) = [ h()dt (1-9)
-

This is the shaded arca in Fiqure 1-4. The solution to equation 1-8
or 1-9 can be found from tables for the standard noimal distribution by first
malking the transformationc of mcan and standard deviation indicated by

cquation 1-7.
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Toe piobilen: of approximating stress and strength by normal distri-
butions repoans, Without presenting the justitication in detafl, Kececioglu
and Cormicr sugeest that nornmal distributions can be approximated from
posstaatic, rost lkely, and optindstic estimates of stiength or stiess.

If we tohe a. b, and ¢ as the thice cestiirates thens

. atidbhec

- (,
“ € (i-10)
s 6

ate constdered cond approsimations They o1e based on the cptimistic

and pessitofstic estinates being thico standard deviations above and below
the e can, respectivelys,  The wolghts milght need to be different but the
concepl 15 highly applicable to structural design tn rock and is, as we
shall zce, very rmuch preferable to the use of safety factorns,

The safety factor §s defincd as the ratio of stiength to stress.

By tolidng tne rabro of thee oean values of the distnibuted stress and stiengli
as a sofety foctor, Hecectoglu and Corsfer poiat oul some fallacies in
the use of safcty factors for design,

Desiancis generally believe that a safety factor above some pre-
conceived value (for example, four to cight for rock in tansion) will 1esult
in no component {aflure.  On the contrary, with these or even higher
wifely factors, there exists some finite probability of fajlure which might
vary {rom acceptably low to intolerobly high.  Similarly, 1t is commonly
believed that o safety factor of one will result in certain fajlure. In fact,
i ctress and strength dictributions are normal (or any symmetric distrilbu-
tion), o safety factor of one gives a probability of feflure os 0. 5 regardiess
of the standaurd deviations involved. Even o safety factor less than one
does not resalt in certainty of fajlure.

Kececioglu and Cormier point out two ways in which fajlure probab-

ilities might vary with o constant safety factor,
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1. Tho mcan of the stress and strength distribution can be changed
in the same proportion with fixed stundara deviations. 1f both are in-
croased, the probability of fatlure decreases and vice versa.

2. The standard ceviations can be alicred while becping the
means fixed. In this case, an increase of one o both stondard deviations
incrcases the probability of failure.

They quote cxemples where with 6 constant safely foctor of 2, 5,
the reliobility of a component might 1sngoe fion . 6628 up Lo 1-10:"'

Finally, it should be: noted that Haugen (J3) has written & book
detailing ways for design of mechanical and elecuomiechanical devices by

this method.



CHAPTER 1N

H ONE- DIMENSIONAL MODEL

Hudson's Morlel

The chie! criticizm of the Weibull theory, insolar as its applicoe-
tion to roch s concerned, 18 that it §s & weakest link modcl.  An attempt
to formulate o Weldbull=type ticatment based on a redundant mmodel gave
an unacceptable result because it allowed for no deterioration with element
fallure, creating a sort of strongest Mnk modol.

A simplec, mathematically clegant one-=dimensional modael which
allows for sttuctural deterioration with element failure has been con-
structed by Hudson (8). This model makes use ol distributions of stress
and strength in a manner strikingly similar to kececioglu and Cormier's
reltability computation. There is an important difference, however.
"Rather than being concerned with probability of failure of an entire com-
ponent, Hudxzon's modc! looks at the probability of fajlure of an infinite-
simal element, and detcriorates the structure in a systematic way as cach
element fails.

The model 13 most easily visualized as a large number of parallel
clements, similar, as lludson points out, to the svrings in a mattress.

Hudson works entirely in terns of strain taiher thon stress, and
further assumes that the ossemblaye is to be tested in a "stiff* (strain-
controlled) wnachine,

As thic asscimblage is loaded, a mean strain (disturbance) is applied
to thc specimen. The strains on cach element, howcever, orc assumod to
be distributed about this mean. Hudson, as did Kececioglu and Cormicr,

assumes o normal distribution for fllustration; the model is not, however,



dependent on the choice of distribution. lle assumes that cach elemcint

is lincarly clastic unti] its strain rcaches a certein value, ot which failwe
occurs and the clement can no longer sustain load. As the specimen s
loaded by the strain-contralled macnine, the nean strain is presuvn.ced o
increase monotonically. . c., it is the indepeadent vorioble and the total
load or strass on thic assemblage i3 the respousc,

Hudson unasccountably tokes the vatiances of the two distributions

~>

2
d

n .

- 2 -
¢ -.d/Kz and S

£+

oa 4

Tue cffcct of this assumplion is that as "d is increcased thiouch the test,

the variance of the « |, distribution alsa Increases.  Nate that "s remaing

d
conatant so tat the assumption that vatinnce §s a function of ican value
2 3
has no effect.  The quantity 7."2/1 is simply an arbitrary constant,

s
Hudson pafnts out that » und } shoutd be chosen so thot :d and 'Ch
arc alv.ays greatar than thiree stondard deviaztions aveay from zero,  This
‘will reduce the musber of regative strains and strengths to aboat 0, 3 3¢
of the total., Unbounded distributions have the slight disadvontage of
always producing some negative values. Because standatd deviation is
the square root of the variance, the requirement s sotisfied by x ond 1
themselves exceceding thice.

As €4 B
in cach cloment when ¢ | > <gr At any valuce of “J’ the probabitity of fail-

d
ure s given by the diffcrence normal distribution as shown by Lececioglu

is lucrcuscd, elcments fajl in succession; f{allurc occurs

and Cormndcr,
liudson next makes the cruclal assuiption that the resjstance of
the overall assemblage §s proportional tou i (Cd) , the "asurvival function”

or proportion of clements unfailed at any Ed. Thus:

5 = Clye, (11-1)
where 'é'r :  mean stress response

and C - a constant of proportionality.



As ¢ 4 approaches zero, the survival fraction 1 approaches one,
thus the constant € is the tangent modulus at zero load or Young's Modulus
of the materfal.  The quautity C | iz the relation boetween stress and strain
at any point and is therefore the secant modulus.

Resulting theoretical strecs-strain curves for the assumption that
k - 1 arc shown in l'igure 11-1. In general shape, these curves bear &
marked shiilarity to completle stress -strain curves for rock In comxession.
hote atso that for k- 1 = w, the "perfectly honogencous® case, the stress
drops fustontancously to zero aond the odel represents o weakest link
material,

The behavior shown in Pigure 11-] can buest be described as " pro-
giessive faflure” or, as Hudson guts it, “structural breakdown. * Clearly,

such a procous represents an apt way to describe the way rock foils,

Davelopment_of o Numerical Model

In aider to fuvestigate some of the ramifications of ludson's model,
a discrote numerical odel was construcied and prograwmmed for the digital
compuicr.

Thotre are a finlte number of elements N arranged in parallel as
before. It is customary in rock mechanics vorl. to usce original spacimen
dimensions in computing strass and strain. The incrense and later reduc-
tion of aroea in a compression specimen is ignored and strain §s taken as
“enalnecring” rather than *truc” stroin. Tho modal con be simplified,
therefore, without sacrificing generality, by working in terms of force
and displacenent rather thon stross and strain,

Hudson assumes that the reduction in stiffness as cach clenent
fails I= a constant. The total stifiness K of a collection of parallel clastic
elements §s the sum of element stiffnesses k'. thus:

N
K=Kk NK .

!
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T total force I' on the assemblage §s:

N N _
Fr=>f4 - » kr = NUK 01-2)
R i i1 i i
wvhere C‘ = the distributed olement displacement
el T . the mcan clement disvlacement,

U

hs the distribulion of ’.’ is inc-eoascd, p.opegating the disturbenco
into the e¢ssemblage, tha individua! " will begin to exceed tho distribuied
strongths r.‘. Ve will aanune that they lose thaelr loud heatlng capacity
as belorce and that ve should deal only with the nuniber of unloiled elo-

moents n whero:
n=1N (13-3)

and 1 §s tho survival fraction,
Combining equations 11-2 and 1i-3, we qot:

- .'—,: e .r -l
} nl.l‘ TR y lk,‘ (11-4)

tihich §s 1ludson's equation (11-1) in tonus of force und displacement.
Note that | is ayain a function of the difference distribution, this time
of (EI - ;‘). In equation 1i-4, K s the initial stiffness or tungent stiff-
ncas and 1 K is the secant stiffness,

let us first ask what would happen if we were to distribute forces
rather than displaccments. The elemant displaccments would still be dis-
tributed in the some way since I‘ s k £y and equation (11-4) would still
cnsue. The survival fraction would still be the result of the difference
distribution and the forr: of the resulting stress-strain curves would be
unaltered,

The result is rathoer surprising since the formn of the complete stress-
stroin curve is 1ather different in a load=-controlled (soft) machine. Wo
sce, however, that working in terms of force has not modceled soft loading

at all since it is l‘ that is increased monotonically and not I°,
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To make I’ the independent variable, we need a rule for distributing
n

fl amony the surviving elenients so that I' = ; fi . With owr prcvious
§= 1
assunption that all k. were the same, the simplest 1ule is to wmake all li = 'E

i
and thus ':’ = f.  This siwipiy says thot the progressive faflure of the matcer-
jal resulis entircly fronm inhormogcencous strength,

Two othey ways are apparent, Jre first is to koenp }:i k and to

assunie that ditlering {j': renall froen a distelaation of inttin]) il cements,

Vi nwst have T - O sothat < - Oat i . Then, | bt ). This
o i i o
could alsa beacwresented as an ivitda! foree distiionstica f i |5 'ﬁ. The

assumptions that l:‘_ = koand ol initial forces or displocer.ants cne phyasically
less appealing than the sccond possibility.,  lere we assume thit the
distijhution of fl results from o distributed }:‘ and thot all "'; < /.

The sccondd approach was chosen for prograwming to test the effect
of the distribution shape and sfzc on the resuliing stiess-strein {(octually
force- dinplaceinent) curves, Hudson had compared the 1esults of vsing
both diccibution:s rarmial ! voth vaifarn: ared found that the oaven wore
shnost indistingulshable,  This was thought to be fncanclusive, however,
and the five bounded distributions discusscd in Ao pondis A were programnnicd
s0 that the stiffness and swrength distributions could be selecied vwaih any
shape, any mean, and any width or varjance desired,

The model was first progrananed with a foice failure criterion and
arrangcd so that {oy a given sct of daly, gencrated by Lionte Coalo fiom
the sclectad distributions, both force antt displacement loadiag 1canlts
were plotted.  Since the compatibility equation cays that oll "i - 2, the

force f' on an element is - b K./« FTaluice occums whon f s, tho

strength ol the clement (nu‘v.' ln‘!(ir(:e :(’n-..«:). The o~der of fnll'.':g- nsill%ur.
determined by the ratio s‘/k. which Is actually the fathure value of "i.
We sec that the sunposed force failme ariterion has become o Jdicplacemant
failure criterion due to the restrictions of the model, This appoach was
tricd with Interesting results, but it was discovered that the ratio of two

random varfates, cven from tha simple unifornm distribation, has o comples
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distribution vehich makhces physical interpeetation of the cffects of distri-
bution shupe and sizc rather difficult. A second versicn of the program
was written in waich the displaccment failure criterjion was gencrated
directly.

let us now look at the workings of this program. The number of
clements inrcad in alony with the shape and variance of the distribuljons,
subnoutines are called which gencrate o siiifness and a strength valne
(now in displacaowent noits) for cach clement.  The clemaents are then
sorted andenunebered in order of increasing failure displacement and
the total stiffncss of the assemblage is computed.  in displacement load-
ing, the total force is calculated from the given displacement and the
total stifiness; the stifiness of the failed clement is subtracted to obtoin
the new total stifiness ond the process is repeated.  The arrays contain-
ing total force and corrcsponding displacements are saved and can be
printcd out or plotted or bath,

I'orce leoading reqguires only & slioht nodilicaticn of tiue displace-
ment pocedure. At cach step, a choeck must be made to see if the failure
of onc clement has redistributed forces in such a way as to cause failure
of additional clements. With a force failure criterion this can be done
by ditect comparison of new clemcut force to strength, 1t is inuch simpler
(and more casily adapted to displacement fallure), howoever, to check
for a drov in total force ot each step, If such a drop occurs in the dis-
ptacement loading, it §s ignored in force loading and the previous force
substituted.

Since diops in foice are always small and localized phenomena on
the rising side of the force displacement curve, the two methods tend Lo
agive nearly identical plots up (o the peak of the curve. After the peak §s
passced, the force loading curve mcrcly displaces without linit at & con-
stant force and is uninteresting, After some testing of these facts, the
computing and plotting of the force loaded cnrve were discontinued. The

final version of the one-dimensional program is presented in Appendix B,



28

We note that the plotted path doces not agree in detail with cither
the force loading path or the displacement loading path.  The drops in '
force in the displacement loading path become very smell untess the droy
in stiffness ic a liige proportion of the remoining total stiffncss as is
grossly exaggerated in these caamples, Doviations of the plotted path
from the displacement loading path are therefore negligabde in lerge
assemblager of eleoments,  Up to the poil of the curve: ondy rathor cener]
drops in force will cauvee Jarge deviations of e {ores losding path Grom
the plot.  Ixeept vhicre such o general drop might ocevr, it can Le cliimed
that the plotted outprt fairly 1epiesents cither force or displacenant Joad-
ing up to the peak of the curve.

The model, as developed above, cun theoretically represent any
rock loading situation in which stress gradient: can bo assumed regligible,
This cssentially precludes modeling all but uniaxiol tension and con=
pression tests,

To reduce the nuwlb.or of indepondoent variables in the mede! and
Jacilitote comparfzon betwean tests, a hypothetical rock was sclected for
modeling in o uniaxial compression test,  The specihnan s a cylinder
with a diamecter of 2 inches and a length of 4 fnches. The rock has a
modulus of 7.6 x 106 psi giving a stiflness K - %‘E of 6 » 106 Ibs. 1t has
a yield point of 7600 psi or 24, 000 Ihs, and it has a strength of about

13, 000 psi or 40, 000 1bs.,

Results

The onc-dimensional model, as prograred 0 2ppondiz B, hos a
large number of independent variables, Clearly, a factorial design in-
volving sufficient levels of all variables is out of the question; a systom-
atic reduction was attempted fnstead.

The logical starting point is the number of clements N, It scems
rcasonable to assumne that the cffects of varying N will appaear independently

of the other varfables in the model (5. ., the distributions). Theee elfects



aro of two distinet kinds. The lecast important, but probably most obvious
in the tigures which follow, is that the plotting of smaller numbers of
points by a "conucect the dots* rule will produce a jagged curve. More
fmportant §3 the statistical "faw of large numbers® which soys that if a
*sufficient* number of samples 1s takaen, the sample distribudon is arbs-
trarily cloaze to the theoretical distribution. This moans that as N
approaches infinity, the curve produced by the model becomes determinate.
The nuniber of elaments should be selected large ecnough to make the force
displacement curve smooth and reproducible,

This requirement must be halanced againgt the increasced cost, in
torms of computing *fino, of increasing N. Figures 11=-2 through 11-6 show
the results of vaiying N (N = 10, 100, 500, 1000) with both distiibutions
uniform. The curves for N - 500 and N = 1000 arc smooth and noarly in-
distinguishable, while the curves for N = 10 and N = 100 are rough and
ot rcproducible. It wos concluded that 500 elements were sufficient,
and this number was usea I most of the lator triols,

Originally, tosting was donc with A.. the lower !.’ound of the
strength distribution, fixed at . 004 inch. This was to simulate o rock
with & yicld point of 24, 000 lbs. or about 7, 600 pai. The model is elastic
until the first clement fails which will occur at the displacement where
tho lcast strength is oxceeded. The stiffness returns to zero when the
last clemont fails, ti}us B. reprosents a "maximum” displacemont. The
result of changing the variance of the strongth distribution is shown in
Figurc 11-7. Hero the stiffncas distribution was haeld constant while the
variance of the strength distribution ranged from zero to 5. 6 x xo's.

Both distributions were uniform for this test. With bounded distributions
the 1ole of the strength variance, or specifically the upper and lower
bounds of the strength distribution, is to fix the yleld point and the max-
fmua displacement at which the spocimen can bear load. I A. and B.
are coincident (varfance - 0}, the yield, peak aml maximum displacement

occur at the sane displacement and wcakeost link failure occurs.
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The cifect of VK is shown similarly in 1'ig. 1l-8. Jere VK tangyes
from 2010 to 10 with both dictiibutions cgain uniform. The curves are
quite interchangcable. This unexpected rosull §s duc o tic indepa .t ace
of the stifinecss and strenath dist:ibutions, 1 ihe prog e the sticeths
are soited in order, but because §t §s fadepoendent the sti‘nes: 18 still
quite reandom. Over o large punlor of amali displaecern et stepsg, theroe-
foro, the drop in stiliness at eaci: tiep will tend o the rean of the dis-
tribution which 1 detcsained betcrchond by solect.n g o Y op o total
stiffncss of & x 106 Iy, cach cluicein bug a woan stiffe, of ¢ l()bli:
1bs. Tha fact that the force displacon <nt curve s Inderondent of the
stiffi.one distribution 15 again jllustrated In 'ig. 11-9 wheie the: strength
distribution. is again untform and lixed and the stifiness distribution shape
ftself is variad. Again the curves are Interchangeeble.

I'igures 11-10 through li-)4 show the cffect of the five posuible
shapes of the strength distrihution on the force-displa~emrent curve,
I'igurc 1i-10 shows the smooth, ratha synaaetitcal curve produced Ly the
uniform distribution. Jiy. 11-11, with the strength unbeodally disttouled,
is still smooth but has a peak about onc-third highaor thon I'ig. 11=10.

This is becouse fewor clements fail in the carly stages of displacoment

and the spocimen retains more stiflfncss at highor displacements.  ig, 11-12
shows 3 siill higher peal: causcd by even loss clement falluie ot amall
displacciments with the left skewed distribution. Ty, 11-13 shows the
opposite effoct of the right skewced distribution where clewments fall most
rapidly in carly loading and slower near the ond, thus flattening the full-
fun side of the face displacement cwrve.,  Vinally, Vig. 13-14 shows the
behavior whan the disteitwtion is bimodal, ccuvsing a plateau effect in

the middle range where few clements are fatling.

Up to this point, the minimu:a of the strength distribution I\s was
fixnd at 0. 004 inch. InTlig. 11-15,its effect 1s analyzed independently with
the strength distiibution unifona end the mindsiim strength As varying fiom

0 to 0. 008 inch and the strength variance held constant.
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Hedaon's nodel used o fined mcan rather than a fixed minihmum
tor tine : o necth o distritation. Fias, =10 through =20 show that the
nuer L oeotel pooces the chuaracteristie "Hudson” family of curves §1
tha neean i fired, din this case to U, G135 inch,

Regardlos, of Ve varying variance, cach family of curves s seon
to shore ¢ conmon point. This point is always located at the displacement
corresponding ta the i can of the stiength diswibution,  or the three
symmetric ) Cistribanions (unifornr, ummodal and binodal), the force ot
the shoacd polnt 4 the poeak focce lor the homogencous (no varianca) curve.
1his is bocoruse al the mean sticnuath half of the elements have foiled and
the stifin:ass is thus cut in Imll,  Similorly, the skewed curves hove
sharcd puinte at ene=third and two-thivds the peak force of the hamogen-
cous curver,

Finally, we sce that the curves for the no varfance casc arc all
jidentical. This unrcalistic behuvior is the only possible result of assum-

ing that rocic is uniform and tha! strecsce ere uniform jn a uniaxiol test,

Conclusions

The one-dimensional numetlical model agrees qualitatively with
Hudson's results if similar assumptions are made. The use of bounded
distributions and numerical techniques allows the effect of all varfables
to be ¢ramined in dotail.  In addition it allows physical intorpretations
to be placed on parameters as {ollows:

1)  The C in Hudson's model (L. 11-1) is the Young's modulus

of the material.

2) C1 isthe sccant modulus at any displacement.

3) Tho distribution of stiffness, i independent of strength,

has no cffrct,

4)  The minimum of the strength distribution determines the

yiold point,

The maximum of the strongth distribution determines wheie

(52
~—

the force dieplacemrent curve 1eturns to the axis.
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€¢)  ihe shape of the furee displacement curve can be quali-
tatively dosenoed i terms of the shape of the stiength
diati vwtion,
Sithoushot soens unfocail e o guiantitatively model a particular
roch ina urriastal (ot vaine thie wethod, the model has great value in
intetpratine the prosiessive fuilure of 1ock in teims of inhomogencity of

thic matoital,

5]
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APPCNDIX A
DISTRIBUTIONG

The five distribution functions used in this study are based on o
set of functions sugcested by Hemmerle (14) for digital computing,  The
first, the uniforn: distribution, is well known, and the othiers are derived
from it in the following way:

1) A variate fromm the unimodal distribution is obtained by adding
two random variates from the uniforn: distribution.

2) A veriate from cither of the skewed distributions is obtained by
doubling either the largest (RSIKEW?) or the smallest (LSKEW*) of
two variates from the uniform distribution.

3) A variate from the biimodal distribution is obtained taking a variate
from the unimodal distribution and subtracting from 1 if less than
1 and from 3 if grecater than 1.

Most large computers have available a subroutine which produces
pscudo-random uniformly distributed numbcers. At UWCC (the University
of Wisconsin Computing Center), a function RANUN which can be called
from Fortran programs, returns uniform variates in the range 0 to 1 (19).
Since the uniform variates are in the range 0 to 1, the procedures described
above for the other distributions produce numbers in the range 0 to 2.

In order to provide numbers in the range a to b, a scaling technigue sug-
gested by Naylor, et al. (16), was uscd.

To test the generation and scaling routines cumulative distribution
functions were found for 1, 000 variates in the range 2 to 8 for e¢ach dis-
tribution. These are shown in I'igs., A-1 to A-5 and are seen to match very

well the functions expected from integration of the continuous distribution

functions.

*
Subroutine RSKEW actually produces a distribution which is left skowed,

i. ., the mean of the distribution is to the right of the midpoint with the
tail of the distribution stretched out to the left,  Similarly, LSKLW produces
o right skewed distribution,
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It should be noted that except for the uniform distribution the
functions used arc nhot stochastically derivable {(justitia!.le) in the sense
that the nommal, gainmra, and oth:er commonly used in simuiation arc.

Theire is no 1eason whatever to exvoect that these distributions represont
the properties of real roch. (There is, however, ncthing which, et the
present time at least, wvould lead to an expectation that any othor distri-
bution represents rock properties.  This problom e unsiudicd and relativaly
unstudiable as well). They were choson becausce thoy are cinap to gen-
eratc oh a dioital computer (¢ single noymal varizie requires the yencation
of 12 unifona variates by the Teichroew approximation (16) or from 6 to

12 times longer than methods used hore), and because they sepresent a
sufficient variety of behavior that the effect of distribution shapes on
progressive failure could be thoroughly examined. An added benefit is
that the distributions are all bounded on @ range of a to b, . allowing physi-
cal intcerpretation to be placed on the bounds a and h.

As proposcd by Hemuerle, the statistics of the 41 derived distribae
tions had not heen studicqd, and caleulation of the mean and variance

were required according to:

b
E(x) = [ »f(x)dx (h-1;
a
and
b
2 2
E(x") = [ x" f(x) dx (\-2)
a

The results of these integrations are shown in Table A-). Also
shown is the width of ecach distribution (b-a) in terms of the variance

V(X) where V(X) is given by:

Vo)« B - [ (32 (h-3)
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TABLE A-1
STATISTICS FOR I'VE DISTRIBUTIONS
No. Distribution LX) E (Xz) b-a
2 2
1 Uniform 2 ; b AL s Zb b 12v
(UNIFRM)
2 Unimodal a+bh 7a% + 10ab + 7b> 12v
(UNIMOD) 2 24
3 Right Skewed b 4+ 2a b2 + 2ab 4+ 3a2 18v
(LSKEW) 3 6
4 Left Skewed 2b + a 3b2 + 2ab + a® 18V
3 6
2 - 2
5 Bimodal a+b 3a__+ 2ab + 3b 8V
2 8

61
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APPENIMIX B
ONE-DIMENSIONAL PROGRAM

The following puqges contain a listing of the main program and
seven subroutines, all in Fortran 1V which were used to preduce the force-
displacement plots in Chapter I, The programs contain references to
numerous subroutines provided by the University of Wisconsin Computing
Center (UWCC) as system library routines. Most of these are involved
with the graphics package which pioduced the plots. The operation of
the programs is described briefly below. While the prograins as prescnted
can be run only on the Univac 1108 at UWCC, it is hoped that some
insights into the model can be gaincd from their preseantation here. 1t is
further hoped that the distiibution subroutines will be useful to others
interested in simulation.

- The main program first {ills arrays containing element stiffness
(STITT) and strength (DISM) with random variables from the appropriate
distribution by calls to GENS and GENK It computes initial total stiffness
(ISTF) and uses a UWCC utility routine (URSORY) to sort both arrays in
ascending order of strength. In displacement 'oading, the force (FORCE)
at cach load increment is computed as the product of current total stiff-
ness and the fallure displacement (DISPL). The total stiffncss is then
reduced by the stiffness of the failed element. The arrays (FORCF. and
DISP1) are then scaled and plotted.

Subroutinaes GENK and GENS fill arrays STIFF and DISM, respect-
jvely, with random variables by calls to appropriate distribution sub-
routincs. These -array~1iilling routines also compute sample statistics
for comparison with distribution statistics.

The distribution subroutines (UNIFRM, UNIMOD, RSKEW, LSKLW,
BIMOD) obtain random variates from the five distributions as described
in Appendix A.
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CALL PLVOT{Ne 00l st iDnY)

L5



w &

-

—
= }

1n

20

5

C FNOR
1nm
102

MAT STATEMENTS

CALL PLOT (XM TN a2 e e ?H1ID)
XMA 1=XMA 4] 4 2

CALL DLNT (YA 197 g alitiNruar)
CALEL PLVECTR{ Mg eNe 1= gn={DmN)
TN =E ]

XKUY A Je g )

CALL “INUNMPIX I 9l e Tal il e P29 el b
CALEL DLNT (YNMA g7 ¢ 211D}
CALL PLNT(2e92es7HitT)
YMA =2 40

NN 20 T=165

AN 25 121469
YRIN=Y AU (0 Y)

CALL PLDT (2eaY"INgatiNNAWN)
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YMA IzYVA I+ 1

CALL PLOT (De oY A Jgu kO]
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PART B

MECHANICAL BEHAVIOR OF ROCK UNDER CYCLIC FATIGUE

By Bezalel C, Halmson‘ and Chin Man l(lm2

INTRODUCTION

Rock and rock structures such as open-pit benches, mine esca-
vations, bridge abutments, dam and road foundations undergo cyclic
loading caused by earthquakes, traffic, drilling, blasting, etc. This
type of loading often causes a material to fail at a stress lower than
its determined strength, a phenomenon called fatigue. Fatigue
characteristics are usually presented in the form of an S-N curve
(stress leve! versus the number of cycles required to bring about
failure). The top stress value that appears to be unaffected by cyclic
loading is sometimes called the fatigue limit. Cyclic fatigue in
structural materials such as metals, concrete and soil has been
thoroughly investigated in the last decades. Rock fatigue, however,
has received only little attention. An early attempt to establish
fatigue characteristics of a limestone was inconclusive mainly due to
a very limited number of tests undertaken (3). Burdine (1), however,
ran an extensive series of compressive cyclic loading tests in Berea
Sandstonc, discovered that the rock was definitely weakened by repet-
itive loading, and determined S-N curves for different testing condi-
tions. Hardy and Chugh (4) used modern equipment to improve testing

1 Assistant Professor, Department of Metallurgical and Mineral
Engineering, University of Wisconsin, Madison,

zGraduate Student, Department of Mctallurgical and Mineral
Enginecering, University of Wisconsin, Mudison,
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procedures and concluded that three additional rdck types were fatigue
prone even under a low maximum number of cycles per test (10, 000},
The present paper reports the results of the first phase in a compre-
hensive experimental study of rock cyclic fatigue. The main objectives
of the investigation are to provide engineers quantitative results in the
form of S-N curves obtained for different rock types under various
stress conditions, to determinc the fatigue strength of failed rock for
the use of mine designers and earthquake researchers, and to provide
a better understanding of the fatigue mechanism by strain measure-

ments and careful observations of fabric changes.
LABORATORY EQUIPMENT AND TEST PROCEDURES
Rock Specimens

Two rock types have bcen used in the reported study. White
Tennessce Marble was chosen beccause of its uniformity, isotropy
and fine grain size. It has been extensively tested and is known to
have very consistent mechanical behavior (6). Georgia Marble was
selected for the ease with which it can be controlled in its post failure
mode (the descending part of the complete stress-strain curve).
Cylindrical specimens, 1.0 inch in diameter and 2.5 inch long, were
cored out of a large rock block by diamond drilling in one
direction only. The automatically-fed coring yielded straight smooth
rock cylinders that did not require further mackining. Specimen ends
were surface ground until flat and parallel faces were obtained to with-
in 0, 001 inch. The specimens were then oven dried at 120°F for a

week prior to testing.

Apparatus

Specimens were loaded in an electro-hydraulic servo-controlled

24
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loading machine of 100, 000 1bs. capacity. A general view of the

entire apparatus is shown in Fig. 1. The machine can be programmed
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FIG. 1 LOADING SYSTEM, ELECTRONIC CONTROLS AND
DA'TTA ACQUISITION INSTRUMENTS.

through a funétion generator to apply cyclic loading to a specimen by
controlling either stress or strain rates. In the experiments
described a constant rate of compressive load was applied to speci-
mens using a triangular wave shape. A digital counter gave the
number of cycles per test, and an X-Y recorder was used to plot
stress-strain or strain-time curves. The load applied to specimens
was senscd by a dynamic lead cell mounted on the botiom part of the
machine crosshead. The longitudinal sirain was measured through
strain gages mounted on a system of double cantilevers (Fig, 2).
The rings holding the cantilever device were threaded on to the
platens in contact with the rock specirnens and held in place by
locking nuts. This method of attachment proved superior to the pre-

viously uscd set-screws which tended to slip in long duration tests,
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FIG., 2 LOADING JIG WITH SPECIMEN, CANTILEVER SET
AND SWIVEL HEAD,

The platens had a diameter only slightly larger than that of the
specimens and were part of a loading jig especially built fot these
tests. The lower platen was rigidly attached to the hydraulic ram;
the upper platen contained a swivel head mechanism to ensure that
complete contact was made with the specimen. To prevent slippage
of the swivel head, six bolts were used to lock it to the part of the
loading jig rigidly attached to the crosshecad. The locking of the bolts
was a tedious job, carecfully performed to ensure good alignment
between specimen and platens, Overtightening of one of the bolts
could causc misalignment and hence premature failure in cyclic

testing. Utmost care was, however, taken in specimen installation
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and the consistency of the results testify to the sucecess of the method.

Expcrimental Program

The portion of the fatigue testing program that has been cerricd
out so far, and is described in this paper, was limited to uniaxial
compression. The intent wae to test rock cylinders under com-
pressive loading increased steadily from zero load to a certain upper
peak, decreased at the same rate to the initial point, and cycled
until failure occurcd. To prevent loss of contact between sample and
piatens at zero load, the lower peak of the compressive cycle was
moved up to around 200 psi and was kept approximately constant
throughout the testing program. The upper peak, however, was set
anew for each test,

The cyclic rate used was intended to simulate the frequencies of
the major pulses in earthquakes (1-2 cps) and blasting (10 cps). In
the tests described the frequencies werce kept at 1-4 cps. The higher
frequencies were preferred because of shorter test duration, but the
lower frequencies (1-2 cps) were necessary when stress-strain
reccrdings were made, due to the X-~Y plotter response limitatiens.
The maximum number of cycles per test was kept at 106 with a few
exceptions when the figure was exceeded. To obtain a representative
S-N curve the fatiguc life of specimens (number of cycles to failure)
was determined for different upper-pecak stress values. The general
procedure was to reduce the maximum applied load from test to test
until the fatigue lifc of the specimens reached 106cyclcs.

Cyclic tests were also run on specimens that had been first
loaded up to their pcak compressive stress carrying capacity. In
Georgia Marble, spccimens were actually brought to 70% of the peak
stress capacity on the descending side of the complete stress-strain
curve, and only then cyclicly loaded. In order to test the fatigue

characteristics of these failed specimens quasi-static strain-
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countrolled loading was used to bring the rock to the initial condition

for cyclic stress-controlled loading.
EXPERIMENTAL RESULTS

The most exlensive testing in the program has been carried out
in White Tennessce Marble., The first stage of the experimental work
was o determine the conpressive strength of the rock, a value to be
uscd as the upper limit to the maximum applied stress in cyclic
loading. Specimens were loaded stress-controlled, at four different
rates, two in the quasi-static range, and twd in the dynamic range

used in the cyclic loading., The results (Table 1) show that the

TABLYE 1.--COMPRESSIVE STRENGTIIS OIF WHITE TENNESSEE
MARBILYE AT DIFFERENT LOADING RATES

Loading rate No. of Mean Compressive Standard Deviation
(psi/scc) Specimens strength (psi) i psi %
40 a 19, 740 355 1.8

100 11 21,150 900 4.2

50, 000 12 23,285 840 3.6
200,000 7 24,890 425 L7

compressive stiength varies considerably with the rate of loading.
Hence, whenever this parameter is employed it should be accompanied
by the conditions under which it was determined. Because of the high
response required,a slorage type oscil]r;scope was employed to
directly record the stress strain curve in cach of the tests. By
photographing the oscilloscope trace a permanent record was obtained.

The first important conclusion dra.wn from cyclic testing of White
Tennessece Marble is that it ié definitely weakened by repetitive loading.
The fatigue effect can best be verified from the S-N curve shown in

Fig. 3. The stress is given in percentage of the compressive strength
g p H
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at 50, 000 psi/sec. Most of the tests were run at 4 cps, while some
were run at 1 or 2 cps for the purpose of recording stress-strain
characteristics. No apparcnt difference was found between the
frequencies uscd as far as specimen fatigue life was concerned, The
S-N curve clearly shows that as the maximum compression decreascs
the life expectancy of a specimen increases. Fig, 3 also indicates
that the spread of experimental points was surprisingly limited, due
to the uniformity of the rock as well as the great care taken in the
preparation and operation of the tests. In a semi-logarithmic plot,
as the onc shown in Fig, 2, the average relationship between the
maximum applied stress (S) and the number of ecycles needed to cause

failure (N) is given by a straight line. At 75% of the dynamic
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compressive strength used specimens did not fail within the experi-
mental limit of 10G cycles. Moreover, when loaded monotonically to
failure ut the conclusion of the cyclic test, they did not show any sign
of vealening or strengthening effects. It is hardly expected that rock
will be subjected to a larger number of similar loading cycles during
the expected life of an engineering structure, In an carthquake, for
example, no more than 100-200 cycles are encountered (2). Hence,

the value of 17,450 psi (0, 75 x 23, 285 psi) can be used as the faligue
limit or the critical eompressive strength of White Tennessec Marble.
A design in intact rock using this value, notl only is protected against
static and dynamic stresses but also against all kinds of cyclic loading.

Typical stress strain cruves are shown in Fig., 4. Permanent
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MUM STRIESS VALUES

strain appears to accumulate in the rock with the disgipation of a

rclatively high amount of energy. Common Lo all tests is the phcnom-
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enon of rather large hystercsis in the first few cycles, an almost
complete closure in the next group of cycles, and a rcopening in the
last sceveral cycles prior to failure. The hysteresis in the first
cycles is probably due to the very high peak loads which take the rock
to beyond its lincar clastic limit and into the zone of irreversible
structurc changes. In the very short life tests, the damage donc by
the high stresses is irreparable and the specimens break before
reaching the sccond stage. IMor lower applied maximum stresses the
phenomenon of hysteresis closure occurs scemingly due to micro-
crack propagation being blocked and the lincar elastic limit being
lifted. As cyclic loading continues, the actual fatigue phenomenon
eventually takes place, internal cracking rcinitiates, the hysteresis
grows and the specimen finally fails,

The amount of strain difference between the upper peaks of the
last and first stress-strain cycles has been closely followed. No
hard conclusions can be drawn as yet, bul it appears that it is defi-
nitely limited by the strain difference between the ascending and the
descending parts of the complete stress-strain curve for the same
value of stress. This implies that the complete stress-strain curve
actually defincs the limit of strain that can be applicd to a rock at a
certain stress level, without producing failure. Quantitatively, the
amount of strain difference varied between 25 - 35 x 10"5 inch/inch,
which is within the limit sct by the complete stress-strain curve.

The behavior of sirain versus time was often recorded and a
typical result is shown in I'ig, 5. The curve shaped by the upper peak
points clearly resembles that of creep behavior, and can be divided
into three stages. Therc is a primary stage in which the upper peak
strain increascs at a decelerating rate. It is followed by a steady
state stage which appears in Fig, § as an ascending straight line,

In medium and long life testis this stage is invariably the longest. The
third and final stage is that of accelerating upper peak strain culmi-

nating in specimen failure, The stages observed in the strain-time
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behavior mateh those in the stress-strain characleristics,
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FIG. § TYPICAL STRAIN-TIME CURVIE

It can be easily verified from I'ig, 5 that the'lower peak strain
points undergo a much more reduced amount of increase. This
implics that the value of the fangent modulus per cycle gencrally
decreases during the test. Indced, the average modulus of the
ascending portion of the first cycle was 11,1 x 106 psi, while that of the
last cycle was 9,9 x ]06 psi. Similar resulls bad been found in
concrete (5).

Typical fatigue fuiled specimens are shown in IMig, 6. No upparent
external difference was found belween this type of faiture and {hat
encounterced in quasi-siatic loading,  Several saraples were vermnoved
from the loading machine during different stages of the cyclic loading,
The sumples were vertically sectioned, polished and pholographed,
No damuage was observed in specimens that had not reached the accel-
erated strain increase stage. 'Thos2 that had'rcachcd the last stage
prior to lailure showed extensive siructural damage dominated by

vertical cracking, A photomicrograph of the central part of a vertical
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seclion in a specimen rermoved during thelast stage is presented in

Fig. 1.
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FIG.6 TATIGULR FAILED WIHITE TIHENNESSEE MARBLE SPLICIMENS

A serics of cvelic loading tests was run in White Tennessec Marble
that had first been loaded in strain coutrol {o its compressive siress
carrying capacily limit, "This i¢ the value commonly referrced to as the
compressive strength,  In stress-controlled laading rock specimens wil!
fail violently atl this point as they cannot take any addifional compressive
force. However, if the loading is performed by controlling sirain rate
the rock will not collapse as it can usually continue to shrink in lengih
while its load supporting capacity is gradually lowered, In this fashion

a complete siress-strain curve can be obtained, IMig, 8 shows such a

5

curve in addition to four other plots, In cach of the plots a specimen

was loaded up to its compressive strength, unloaded, and then cyeled

w /



Pes—— O

R

P

NOT REPRODUCIBLE

RN R
N CAE I IO

FIG, 7 PIHHOTOMICROGRAPI[I OI' A FATIGU FAILED SPICIMIEN--
VERTICAL SECTION

in stress control to an upper peak value lower than the ultimale
strength, The purpose was to verify whether such failed rock could
support fatigue type loading. Surprisingly the rock appeared rather
strong, and could probably still perform useful work, although a
comparison with the S-N curve in Fig, 3 will show thatl it had consi-

derably weakened., As expecled, the number of eycles increased ag
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the maximum applied load decreascd. A close look at Fig. 8 will
show that in three of the four plots the upper peak of the last cycle
was in the close proximily of the expected descending line of the
complete siress-sirain curve. This was in accordance with the
hypothesis raised above regarding the extent of the upper peak strain
incrcasc during cyclic loading.

An additional serics of tests wasg contemplated well within the
failed region characterized by the descending part of the eomplete
stress-strain curve. Due to the very steep descending stress-strain
curve in White Tennessece Marble, a different rock, namecly Georgia
Marble, was choscn for these lests., As scen in Fig. 9 the slope of
the failed portion of the curve is very mild in the latter rock. This
enabled ovne not only to obtain repeatable complete stress-strain
curves, but also to stop the loading at any point in the failed zone and
unload without the danger of specimen collapse. Georgia Marble
specimens werce loaded in strain control to their cempressive strength
and beyond,to 70% of the load carrying capacity within the failed zone,
They were then unloaded, and cyclicly loaded in stress control to
upper peak values of different magnitudes. The results are shown in
Fig. 9. A préliminary S-N curve based on these tests is shown in
¥ig, 10, Again, onc is surprised to note that failed rock can still
show remarkable sirength as far as cyclic loading carrying capacity.
It is emphasized again, however, that for the same pcak loads in the
unfailed mode the number of ¢ycles would be appreciably larger.
Moreover, it is clear thatl in both rocks.the fatigue limit is lowered in
failed rock. It can be noled from IMig. 9 that the uppcer peak of the last
cycle falls agaiu in the close proximitly of the expected descending
completle stress-strain curve., The behavior of fajled rock undes
cyclic loading is of particular importance to the understanding of
failed underground pillars and walls subjcctcd to fatiguc type stresses,
Because failed rock is internally fraciured, the study may also be

indicative of the behavior of jointed benches or slopes and faulted
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formations subjected to earthquake, blasting, or traffic loadings.
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SUMMARY AND CONCILUSIONS

The work reporled here is only the first phase of an extensive
investigation into the behavior of rock under cycelic loading., The main
resulls oblained thus far in cyclie uni:.w.ﬁal compression of While
Tennesscee Marble are:

1) Cyclic loading has a definite weakening (fatigue) effect on the
rock if the maximum applicd stress is in the 75-100% range of the
compressive strength.

2) Stress-strain records reveal three major slages occuring

during cyclic loading: decreasing hysleresis, no hysteresis, increasing
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hysteresis, The last stage is associated with [atiguc affceled internal
fracturing. _

3) The increase in ubpex_‘ pcak strain between the first and thc:
last cycles is always within the 1imit set bj the éom})léte'stréss~str‘ain
curve for the smme maximum applied load. |

4) The variation of the cyclic upper peak strain with time closely
resembles that of creep, with primary, stecady siate, and tertiary or
accclerated stupes,

5) No visible structural damage can be observed in speeimens
removed prior to the accelerated strain-inerease stage. However,
polished scctions of specimens that had reached the tertiary stage
show an abundance of internal fracturing dominated by vertical
cracking along and across grain boundarics,

6) TP ailed rock, although weakened, can sustain a certain amount
of fatigue loading depending on the level of applied stresses. This
conclusion is supported by testing of both Tennessce and Georgia
Marbles.

The results obtained thus far show that rock cyclic faligue is
a phenomenon that cannot be ignored by engineers and rock mechanics
scientlists., A direct reccommenaation emerging from the study is that
in surfacc and underground design the apparent [atigue limit, as
determined by tests similar to those described above, be used instead
of the commonly cmployed compressive sirength value. In the design
of structures thatl eventually rcach their peak load carrying capacity,
use could be made of the faligue characieristics of failed rock., Thesc
characteristics are believed to also be indicative of jointed and faulted
rock behavior under cyclic loading.  The mechanism of fatigue in not
yet clearly understood but the findings are promising cuough {o justify
continuation of the rescarch, Studies on the behavior of rock in uni-
axial compression, tension and triaxial compression subjected to cyclic

fatigue arc currently underway.
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